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In the past decade, various interesting magnetic properties have
been reported with Prussian blue analogués, example, high
Curie temperatureTg) valueg and magnetic functionalities, such
as humidity respondeand photomagnetisth.in addition, new
functions have been recently studfesljch as pressure-induced CN
flip, zero thermal expansion, and hydrogen storage. Prussian blue
analogues have two types of crystal structuregM&(CN)e]/zzH,0
(space groufrm3m) and AMa[Mg(CN)g] (F43m), where M, and
Mg are transition metal ions, and A is an alkali ion. To maintain (c)
charge neutrality, M[Mg(CN)g]23zZH-O has vacancies of [M
(CN)¢] and the ligand water molecules coordinate to thg ibh,
and zeolitic water molecules exist in the lattfde. AM A[M g(CN)g],
the My ions coordinate to six cyanonitrogen, and the A ion is
located in the interstitial site of the lattice (Figure 18)lt is
noteworthy that the position of the A ion in this type of crystal
produces a 4otoinversion operator. Hence, the crystal structure is
noncentrosymmetric. In this work, we observed the second harmonic
generation (SHG) and magnetization-induced effect in the SHG
with AMA[Mg(CN)g]-type Prussian blue analogues of CsCo|[Cr-
(CN)g]*0.5H,0 and RbMn[Fe(CNj. In these systems, a large
interaction between the nonlinear optical response and the magnetic
spins was observed. The present SHG observations indicate that
AMA[Mg(CN)g]-type Prussian blue analogues are piezoelecTric (
> Tc) and piezoelectric ferromagnet (< T¢). In this paper, we
show this new magnetooptical functionality due to the interaction
between electronic and magnetic properties of AMg(CN)g]-
type Prussian blue analogues. 0 50 100 150 200 250 300

C3Cd'[Cr'"(CN)e]-0.5H,0 and REMn"[Fe'' (CN)g] of the target Temperature (K)
samples and CCr" (CN)2rs+4.8HO of the reference sample Were  ig o 1 - (a) The unit cell of AMA[M(CN)e] (F43m). (b) The SH intensity
prepared by the procedures reported in our previous pé&feusd versus incident light intensity of CsCo[Cr(C{#0.5H,0 (®) and Co-
their elemental analyses were confirmed by an inductively coupled [Cr(CN)e]2z+4.8H:0 (O) at 295 K (incident light= 1064 nm). The solid
plasma mass spectroscopy and a standard microanalytical methodine represents the fitting curve using a quadratic function. (c) Temperature

- . - e dependence of the SH intensity generated from CsCo[CHGNH,O
(Supporting Information). The CN stretching frequencies in the IR (incident light intensity= 22 mJ cm?). MSHG, Magnetization-induced

spectra of CsCo[Cr(CN)-0.5H0, Co[Cr(CN}]2s4.8H0, and SHG. (d) Field-cooled magnetization curve of CsCo[Cr(gN)5H,0 in
RbMn[Fe(CN}] were 2166, 2168, and 2152 ch respectively. a magnetic field of 10 G.

Scanning electron microscope (SEM) images showed that the

prepared samples consisted of cubic microcrystals with particle  When C&Co'[Cr'"(CN)e]-0.5H,0 was irradiated by 1064 nm
sizes of 140+ 30 nm (CsCo[Cr(CN]-0.5H,0), 80 = 10 nm light at 295 K, 532 nm light was observed. Since the intensity of
(Co[Cr(CN)]2/5-4.8H,0) (Supporting Information), and 24 1.1 the 532 nm light increased with the square of the incident light
um (RbMn[Fe(CN)]).*> SHG measurements of powder-form intensity (Figure 1b), the observed 532 nm light is clearly SH light.
samples were conducted in the reflection mode using the following The temperature dependence of the SH intensity showed that the
instruments. Incident light was provided by a Q-switched Nd:YAG  sH intensity was nearly constant between 295 and 55 K, but the
laser (HOYA Continuum, Minilite Il, wavelength of 1064 nm, pulse  SH intensity increased below 55 K and the intensity at 5 K was
duration of 10 ns, repetition rate of 15 Hz). SH light was detected 1 g times larger than the intensity at 295 K (Figure 1c). This

by a photomultiplier tube (Hamamatsu, R329-02) through color temperature dependence corresponds to the temperature dependence
filters and a band-pass filter. The angles of incidence and reflection ¢ magnetization of this system (€0 S = 3/2; Ci': S = 3/2)

on the sample were 4§Supporting Information).
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which is a ferromagnet with a Curie temperature of 46 K (Figure
* The University of Tokyo. 1d). In contrast, CHCr'"'(CN)g]2/s:4.8H,0, the reference sample,
*PRESTO, JST. did not exhibit SHG over the entire temperature range.
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7 SimultaneouslyF43m-type Prussian blue analogue-based magnets
N HT phase are proven to be piezoelectric ferromagnets, that is, condensed
/?H ; £43m matter with both piezoelectric and ferromagnetism. Since a variety

El ; 14 }}.%-?Mﬁ of F43mtype Prussian blue analogues can be prepared, these
~": 41 i % (] analogues will open a new avenue in the study of piezoelectric
‘g N % ferromagnets and nonlinear magnetooptics.
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Supporting Information Available: The syntheses and elemental
analyses, the SEM images, the MSHG tensor elements, the setup of
SHG measurement, the SH intensity versus incident light intensity of
the HT phase of RbMn[Fe(CR]) and the MSHG generated from the
LT phase of RbMn[Fe(CN) are available. This material is available
free of charge via the Internet at http://pubs.acs.org.
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Figure 2. Temperature dependence of SH intensity generated from RbMn-
[Fe(CN)] (incident light= 1064 nm, intensity= 11 mJ cn1?).

The SHG observed in G30'[Cr'"'(CN)e]-0.5H,0 is understood
by the following. The second-order optical response is described
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